Midpoint Approximation

Sometimes, we need to approximate an integral of the form $\int_{a}^{b} f(x) d x$ and we cannot find an antiderivative in order to evaluate the integral. Also we may need to evaluate $\int_{a}^{b} f(x) d x$ where we do not have a formula for $f(x)$ but we have data describing a set of values of the function.

Review

We might approximate the given integral using a Riemann sum. Already we have looked at the left end-point approximation and the right end point approximation to $\int_{a}^{b} f(x) d x$ in Calculus 1 . We also looked at the midpoint approximation M :

Midpoint Rule If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \approx M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=\Delta x\left(f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \text { and } \bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=\text { midpoint of }\left[x_{i-1}, x_{i}\right]
$$

Midpoint Approximation

Example Use the midpoint rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x$.
$(=\ln (4)=1.386294361)$
Fill in the tables below:

- $\Delta x=\frac{4-1}{6}=\frac{1}{2}$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline x_{i} & x_{0}=1 & x_{1}=3 / 2 & x_{2}=2 & x_{3}=5 / 2 & x_{4}=3 & x_{5}=7 / 2 & x_{6}=4 \\
\hline
\end{array}
$$

$\overline{x_{i}}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$	$\overline{x_{1}}=5 / 4$	$\overline{x_{2}}=7 / 4$	$\overline{x_{3}}=9 / 4$	$\overline{x_{4}}=11 / 4$	$\overline{x_{5}}=13 / 4$	$\overline{x_{6}}=15 / 4$
$f\left(\overline{x_{i}}\right)=\frac{1}{x_{i}}$	$4 / 5$	$4 / 7$	$4 / 9$	$4 / 11$	$4 / 13$	$4 / 15$

- $M_{6}=\sum_{1}^{6} f\left(\bar{x}_{i}\right) \Delta x=\frac{1}{2}\left[\frac{4}{5}+\frac{4}{7}+\frac{4}{9}+\frac{4}{11}+\frac{4}{13}+\frac{4}{15}\right]=1.376934177$

Trapezoidal Rule

We can also approximate a definite integral $\int_{a}^{b} f(x) d x$ using an approximation by trapezoids as shown in the picture below for $f(x) \geq 0$

The area of the trapezoid above the interval $\left[x_{i}, x_{i+1}\right]$ is $\Delta x\left[\frac{\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right.}{2}\right]$.
Trapezoidal Rule If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots++2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \text { and }
$$

Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots++2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \text { and } .
$$

Example Use the trapezoidal rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x$. (= $\ln (4)=1.386294361)$

- $\Delta x=\frac{4-1}{6}=\frac{1}{2}$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=\frac{1}{x_{i}}$							

Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots++2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \text { and } .
$$

Example Use the trapezoidal rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x$. ($=$ $\ln (4)=1.386294361)$

- $\Delta x=\frac{4-1}{6}=\frac{1}{2}$

| x_{i} | $x_{0}=1$ | $x_{1}=3 / 2$ | $x_{2}=2$ | $x_{3}=5 / 2$ | $x_{4}=3$ | $x_{5}=7 / 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$x_{6}=4$

$>$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=\frac{1}{x_{i}}$	1	$2 / 3$	$1 / 2$	$2 / 5$	$1 / 3$	$2 / 7$	$1 / 4$

- $T_{6}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)+2 f\left(x_{5}\right)+f\left(x_{6}\right)\right)$
$-=\frac{1}{4}\left(1+2\left(\frac{2}{3}\right)+2\left(\frac{1}{2}\right)+2\left(\frac{2}{5}\right)+2\left(\frac{1}{3}\right)+2\left(\frac{2}{7}\right)+\frac{1}{4}\right)$
- $=1.405357143$.

Error of Approximation

The error when using an approximation is the difference between the true value of the integral and the approximation.

- The error for the midpoint approximation above above is

$$
E_{M}=\int_{1}^{4} \frac{1}{x} d x-M_{6}=1.386294361-1.376934177=0.00936018
$$

The error for the trapezoidal approximation above is

$$
E_{T}=\int_{1}^{4} \frac{1}{x} d x-T_{6}=1.386294361-1.405357143=-0.0190628
$$

- Error Bounds If $\left|f^{\prime \prime}(x)\right| \leq K$ for $a \leq x \leq b$. Let E_{T} and E_{M} denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Error of Approximation

Error Bounds If $\left|f^{\prime \prime}(x)\right| \leq K$ for $a \leq x \leq b$. Let E_{T} and E_{M} denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_{1}^{4} \frac{1}{x} d x$ when $n=10$.

- $f(x)=\frac{1}{x}, \quad f^{\prime}(x)=\frac{-1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}$
- We can use the above formula for the error bound with any value of K for which $\left|f^{\prime \prime}(x)\right| \leq K$ for $1 \leq x \leq 4$.
- Since $\left|f^{\prime \prime}(x)\right|=f^{\prime \prime}(x)=\frac{2}{x^{3}}$ is a decreasing function on the interval $[1,4]$, we have that $\left|f^{\prime \prime}(x)\right| \leq f^{\prime \prime}(1)=2$ on the interval $[1,4]$. So we can use $K=2$ in the formula for the error bound above.
- Therefore when $n=10$,

$$
\left|T_{10}-\int_{1}^{4} \frac{1}{x} d x\right|=\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}=\frac{2(4-1)^{3}}{12(10)^{2}}=0.045
$$

- Note that the bound for the error given by the formula is conservative since it turns out to give $\left|E_{T}\right| \leq 0.045$ when $n=10$, compared to a true error of $\left|E_{T}\right|=0.00696667$.

Error of Approximation

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Example(b) Give an upper bound for the error in the midpoint approximation of $\int_{1}^{4} \frac{1}{x} d x$ when $n=10$.

- As above, we can use $K=2$ to get

$$
\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}=\frac{2(3)^{3}}{24(10)^{2}}=0.0225
$$

(c) Using the error bounds given above determine how large should n be to ensure that the trapezoidal approximation is accurate to within 0.000001 $=10^{-6}$?

- We want $\left|E_{T}\right| \leq 10^{-6}$.
- We have $\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$, where $K=2$ since $\left|f^{\prime \prime}(x)\right| \leq 2$ for $1 \leq x \leq 4$.
- Hence we will certainly have $\left|E_{T}\right| \leq 10^{-6}$ if we choose a value of n for which $\frac{2(4-1)^{3}}{12 n^{2}} \leq 10^{-6}$.
- That is $\frac{\left(10^{6}\right) 2(27)}{12} \leq n^{2}$
- or $n \geq \sqrt{\frac{\left(10^{6}\right) 2(27)}{12}}=2121.32, n=2122$ will work.

Simpson's Rule

We can also approximate a definite integral using parabolas to approximate the curve as in the picture below. [note \mathbf{n} is even].

Three points determine a unique parabola. We draw a parabolic segment using the three points on the curve above x_{0}, x_{1}, x_{2}. We draw a second parabolic segment using the three points on the curve above x_{2}, x_{3}, x_{4} etc... The area of the parabolic region beneath the parabola above the interval $\left[x_{i-1}, x_{i+1}\right]$ is $\frac{\Delta x}{3}\left[f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]$. We estimate the integral by summing the areas of the regions below these parabolic segments to get Simpson's Rule for even n :

$$
\int_{a}^{b} f(x) d x \approx S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \text { and }
$$

In fact we have $S_{2 n}=\frac{1}{3} T_{n}+\frac{2}{3} M_{n}$.

Simpson's Rule

$$
\int_{a}^{b} f(x) d x \approx S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Use Simpson's rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x$. (= $\ln (4)=1.386294361)$
Fill in the tables below:

- $\Delta x=\frac{4-1}{6}=\frac{1}{2}$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=\frac{1}{x_{i}}$	1	$2 / 3$	$1 / 2$	$2 / 5$	$1 / 3$	$2 / 7$	$1 / 4$

- $S_{6}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right)=$
- $\frac{1}{6}\left[1+\frac{8}{3}+1+\frac{8}{5}+\frac{2}{3}+\frac{8}{7}+\frac{1}{4}\right]=1.387698413$
- The error in this estimate is

$$
E_{S}=\int_{1}^{4} \frac{1}{x} d x-S_{6}=
$$

$$
1.386294361-1.387698413=-0.00140405
$$

Error Bound Simpson's Rule

Error Bound for Simpson's Rule Suppose that $\left|f^{(4)}(x)\right| \leq K$ for $a \leq x \leq b$. If E_{S} is the error involved in using Simpson's Rule, then

$$
\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_{1}^{4} \frac{1}{x} d x$ is accurate to within $0.000001=10^{-6}$?

- $f(x)=\frac{1}{x}, \quad f^{\prime}(x)=\frac{-1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad f^{(3)}(x)=\frac{(-3) 2}{x^{4}}$, $f^{(4)}(x)=\frac{4 \cdot 3 \cdot 2}{x^{5}} \leq 24 \quad($ for $1 \leq k \leq 4)=K$
- We have $\left|E_{S}\right| \leq \frac{24(3)^{5}}{180 n^{4}}$
- We want $\left|E_{S}\right| \leq 10^{-6}$, hence if we find a value of n for which $\frac{24(3)^{5}}{180 n^{4}} \leq 10^{-6}$ it is guaranteed that $\left|E_{S}\right| \leq 10^{-6}$.
- From $\frac{24(3)^{5}}{180 n^{4}} \leq 10^{-6}$ we get that $10^{6} \frac{24(3)^{5}}{180} \leq n^{4}$ or $n \geq \sqrt[4]{10^{6 \frac{24(3)^{5}}{180}}}=75$. $n=76$ will work.
- This is a conservative upper bound of the error, the actual error for $n=76$ is -8×10^{-8}

